
Considerations in Development of Expert Systems for
Real-Time Space Applications

S. Murugesan
NASA Ames Research Center

Mail Stop: 2 4 4 4
Moffett Field, CA 94035

ABSTRACT

Over the years, demand on space systems has increased tremendously and this trend will
continue for the near future. Enhanced capabilities of space systems, however, can only be met
with increased complexity and sophistication of onboard and ground systems. Artificial intelligence
and expert system techniques have great potential in space applications.

Expert systems could facilitate autonomous decision making, improve in-orbit fault diagnosis
and repair, enhance performance and reduce reliance on ground support. However, real-time expert
systems, unlike conventional off-line consultative systems, have to satisfy certain special stringent
requirements before they could be used for onboard space applications. Challenging and interesting
new environments are faced while developing expert system space applications.

This paper discusses the special characteristics, requirements and typical life cycle issues for
onboard expert systems. Further, it also describes considerations in design, development, and
implementation which are particulary important to real-time expert systems for space applications.

1. INTRODUCTION

Current and future generation space systems are called upon to perform complex and more
sophisticated, and intelligent tasks. The complexity of these systems are increasing in three dimen-
sions: (1) the number of functions to be monitored and controlled, and also the kinds and volume
of data to be considered, (2) need for quick response and faster rate of processing, and (3) need for
more intelligent behavior.

There is a growing interest and pressing need for using knowledge-based problem solving tech-
niques to cope with the increased demands on aerospace systems. Proper application of these tech-
niques can provide better strategies for solving complex problems as discussed by Heer and Lum
[141, and Weinweber [181: i) autonomous satellite and space station control, ii) electric, propulsion,
life support and thermal subsystems fault diagnosis, in-orbit repair/reconfiguration, and servicing,
iii) intelligent vision and robotic systems with ability to recognize objects and scenes, and to find
their way in places, whose conditions are not known, and far from earth.

Real-time expert systems are appropriate where there is an inherent need to enhance system
autonomy without human assistance/intervention, where conventional techniques cannot make use
of all relevant information providing intelligent or optimal solutions within a given time. Also,
they could be used where humans work under severe psychological tensions, suffer from cognitive
overload, fail to effectively monitor and evaluate all available information quickly, or make high-cost
mistakes. Further, real-time expert systems are finding applications in domains such as routine
operation and control, where qualified personnel who are able to evaluate complex situations and
recommend actions are scare and not available all the time. A good discussion on the need for and
desired features of expert system to assist human operators in monitoring and control of complex
real-time process is given by Dvorak (81.

487

2. CHARACTERISTICS OF REAL-TIME SYSTEMS

The term real-time is often easier to recognize than to define. Though we understand the
meaning of the term within the context of our own work, there is no consensus on a general or
global definition. Also, there is a lot of misconception about what is meant by real-time. Some
think that a system is considered real-time if it processes data quickly [26]. Another common usage
is that real-time means "perpetually fast".

The feature that defines a real-time system is the system's ability to recognize an external event
and to give a response by performing a service within a prescribed fixed time, which is dictated by
application environment and criticality of the event. Response time - the time computer/expert
system takes to recognize and respond to an external event -, is the most important factor in real-
time applications. If events are not controlled within the allowed time, the process might go out
of control and result in catastrophic effects. If given an arbitrary input or event, and an arbitrary
state of the system, the system always produces a response by the time it is needed, then the
system is said to be real-time [18]. The desired response time might vary from a few hundreds of
microseconds to a few seconds, depending on application. Also, real-time expert systems have to
perform their functions continually without ignoring on-going processes. Real-time systems are also
known as interrupt driven and reactive systems. When an interrupt mechanism is used to signal
a request for service/attention, the program/system becomes non-deterministic in that it is not
possible to predict exactly what it will be doing a given number of clock cycles after initialization
of the system.

In expert systems commonly used for medical diagnosis, design, configuration, financial analy-
&/advice, and other similar applications data is static and time to respond or give a decision is not
critical. These off-line (sometimes called '8oft real-time') advisory systems operate in non-dynamic
domains at static points in time (i.e. data base, knowledge base, decision rules, etc. are fixed
during a decision process). They do not have to keep up with the rapidly changing events in the
external world, or meet high standards of 'hard' real-time systems used for critical applications,
such as very high reliability, availability and recovery after crashes.

The real-time domains have the following special characteristics, posing a set of complex and
challenging problems for design and development of real-time expert systems [18].

0 Dynamic data (non-monotonocity): Incoming sensor data, as well as facts that are
deduced, do not remain static during the entire run of the program. They may decay in
validity with time or they cease to be valid because external events have changed the state
of the system.

0 Guaranteed response time: The system must be able to respond by the time response
is needed. Further more, one would like to achieve best response time within the deadline.
Also, behavior of the expert system should be predictable that the response will fall within
bounds or constraints.

0 Asynchronous inputs/interrupts: Real-time systems must be capable of accepting asyn-
chronous inputs and interrupts from external events. Also, they must be capable of inter-
rupting an ongoing decision making process and resuming it after higher priority tasks are
processed. It must have interfaces to gather data from a set of sensors or other (expert)
systems. These requirements make testing and verification of expert systems more difficult.

0 Temporal reasoning: Time is naturally an important variable in real-time domains. Typi-
cally, a real-time system needs the ability to reason about past, present and future (expected
or anticipated) events, as well as the sequence in which the events had occurred. Therefore,
knowledge representation schemes should permit representation of temporal relationships. A
facility should exist for maintaining, accessing and statistically evaluating historical data.

4 8 8

0 Integration with procedural components: Must be capable of integrating with con-
ventional real-time software, which performs tasks such = data compression, signal or data
processing, feature extraction and other application specific inputs/outputs.

0 Focus of attention mechanism: When a significant event occurs, a real-time system should
be able to reprioritize it goals and focus on important goals first. It could involve assigning
context in which certain rules apply, modifying the set of sensors the system is currently
looking at and changing the rate at which data is being analysed.

0 Continuous operation: It must be capable of continuous operation over a long time -
until stopped by an operator (through commands) or by other specific external events.
Close attention, therefore, must be paid to garbage collection (efficient recycling of memory
elements that are no longer needed) and archiving (maintenance) of sensor histories as far
back as rules require them. Further, garbage collection must be done ’on the fly’, not at
processor’s discretion.

0 Explanation facility: It shows how the expert system reached a given conclusion and why
the conclusion is justified. It gives a sequence of rules and facts that lead to a particular
conclusion and describes its rationale for doing so. It is like an argument in favour of the con-
clusion. It is very essential in operator-assisted critical real-time systems, since the operator
can accept or over-rule the decision reached by the system, after looking at the explanations
by the system. Also, it can be used effectively for debugging and maintenance (extension) of
knowledge base and to inspire confidence in systems performance and reasoning process [33].

In addition, constraints on realization of reliable and radiation-tolerant systems for space
applications using microcomputers, and their processing speed and memory size limitations, is
a critical bottleneck in applying knowledge-based techniques to real-time domains. Innovative
methods have to be followed to overcome this bottleneck. The following characterstics are especially
important to space applications.

0 Robustness: It refers to gracefully degraded, reather than abrupt or fragile, behaviour of
expert systems, while dealing with problems at the periphery of its domain (knowledge).

0 Handling uncertainty or missing data: The system must be capable of handling reason-
ably and safely the uncertain, incomplete, vague, and missing information.

0 Reliability: Extremely high reliability of operation in the targeted application environment
and high degree of correctness and consistency of decisions are very crucial.

0 Fault tolerance: Tolerance to failures of hardware, software (knowledge base, inference
engine, operating system, etc.) , and monitoring devices; fail-safe operations and graceful
degradation

0 Ease of verification, validation and testing: The system should be designed such that
it is easily testable under various operational modes, and credible contingencies. Thorough
verification and validation, and demonstration of proper functioning is very essential before
actual use.

489

3. DESIGN AND DEVELOPMENT

Development of expert systems should be considered as a system engineering activity encom-
passing many tasks. It is a ”team work”. The division of expert system life cycle into various
phases reduces the complexity of design by grouping and ordering main tasks of development [29].
It provides guidance on the order in which a project should carry out its major tasks. Many projects
have come to grief, exceeded budget and schedule, and/or didn’t deliver what was required, because
they pursued their various development and evolution phases in a wrong way. Division of life cycle
also helps to enforce an accepted development methodology among various persons involved in dif-
ferent phases and areas of development. Major phases in life cycles of expert systems development
include:

0 Problem identification/specification

0 Acquisition of domain knowledge from experts, documents, previous case history, etc.

0 Formulation of knowledge base, knowledge representation

0 Choice (and/or development) of suitable inferencing/reasoning schemes and procedures

0 Testing of expert system software (residing in development tools) under static (non-real-time)
and real-time environments
- Review human domain experts and specialists; revisions

0 Integration of hardware deliverables and complied ’expert software’

0 Testing under simulated and real-life environments under various modes of operation
- Reviews by human domain experts and specialists; revisions

0 Verification and validation: It covers the entire life cycle, and not just testing before delivery

0 Delivery of flight-worthy Expert System; maintenance, upgrading and evolution

A typical life cycle of expert system is given in Figure 1. End product and outcome of each
phase of development of expert system is summarized in Table 1.

3.1 Problem identification and domain feasibility study

Expert systems are useful for solving well-formulated problems, for which algorithmic solutions
donot exists. These problems could be solved by using predetermined methods and heuristics that
human experts have accumulated over years of learning and experience. An expert system consists
of two basic elements [13]: a knowledge base, and an inference engine. A knowledge base consists
of formalized facts and heuristic in a specific problem-solving domain. Inference engine uses this
knowledge to solve problems.

The study of suitability of a domain for expert system application is very important and it
involves the following steps (401: 1) determine the nature of task, 2) determine if experts, who
can solve the problem and are willing cooperative to share their expertise, exists and 3) determine
whether their expertise can be modelled via an expert system. Domains suitable for expert system
application tends to be deep and narrow. If the problems lend themselves to numeric or algorithmic
solutions, it would be more effective to use those methods, rather than expert systems. However, if
solution involves more of heuristics and human experts can solve the problem within a reasonable
time and explain the solution process, expert systems could be considered. In essence one haa to
see whether the problem is ”do-able” by one or more expert systems.

4 9 0

3.2 Requirements engineering

Expert system system development should begin with a complete, consistent and unambigu-
ous idea of the needs of the user or the requirements of the system, and they should be well
documented. The main advantages of the requirements analysis and understanding are: It serves
as common ground for agreement between the developer and user/coustomer and helps in avoiding
misunderstanding between them. It helps in early detection of errors. A survey [l] indicates that
about thirty percent of errors in a major software intensive projects are due to faulty requirement
specifications. It also helps the programmers to check that all the requirements are met. Further,
it helps in defining requirements and specifications of the various real-time interfaces. In addition,
it helps in generating good test cases and judging the quality of test cases actually used. Require-
ments of the system should be reviewed prior to the next phase of activity, by experts and project
managers, system integrators, developers of other interfacing systems and must be agreed upon.
The persons who are actually going to use the system during the operational phase should also be
involved in this task.

3.3 Knowledge acquisition

The essence of an expert system is acquiring and encoding knowledge about a domain and
then using it to solve problems in that domain. Knowledge elicitation has been cited as one of the
bottlenecks in expert system development. Knowledge acquisition is the transfer of problem solving
expertise from several sources, which include human experts, text books, literature, data bases, case
histories and previous experiences. Of all these sources, the expertise of human specialists forms
the main target of knowledge acquisition. Various techniques for acquiring knowledge from experts
can be found in [7, 25, 271.

3.4 Knowledge representation

Knowledge representation refers to structuring of the acquired knowledge into computer rec-
ognizable form. Several knowledge representation models [13, 331 such as rules, semantic networks,
and frames are being used, and each model has both advantages and disadvantages depending
upon characteristics of the domain knowledge. Also, there are schemes which use a mixture of
these representation schemes, to gain maximum benefits.

Various principles of software engineering [30, 31, 40) could be used in the design of expert
system. They include: information hiding, separation of concerns, layering, and modularity.
The principle of information hiding suggests that the group of rules hide internal details about
the system. Also, while designing rules, it is better to separate different functionalities and use
different rules to implement these functions. It is called the principle of separation concern^.

The principle of layering suggests that system should be considered as composition of layers.
Any layer is aware of only the layer beneath it. The activation of rules at the higher level due
to activation of rules at the lower level should be minimal. Such practice not only simplifies
implementation, but also simplifies testing.

3.5 Testing and validation

” A system can best be designed if testing is interlaced with designing instead of being used after
the design”. The purposes of testing and evaluation include: i) guaranting satisfactory performance
of the system, ii) locating weaknesses in the system, so that further improvement can be done by
making knowledge-base richer and problem solving strategies more powerful, iii) evaluating different
functions, and iv) evaluating correctness of the results, response time, etc. Testing creates tangible
degree of trust in system reliability. However, difficulties in defining the correct test strategy causes
errors to go undetected. Functionality and design bugs not caught during development testing have

491

been found after prolonged time when the system is in actual use.

There are two basic approaches to testing: Block boz and white boz methods. The block
box approach is based on specifications and functional requirements analysis and input output
characteristics [16]. The white box method is driven by the way the system (rules, inference
strategies, etc.) are designed and implemented. The block box testing is performed by generating
a test case (a set of test input) (111. Test case is generally prepared manually based on specification
of the system and when available from real-life data. The white box testing focuses on correctness
of implementation, without much regard to overall system functionality. A combination of both
the black box and white box techniques would be most effective.

By documenting test comprehensiveness goals in test plans one can lower the probability of
missing tests (see IEEE Standard 829). Test comprehensiveness are defined in terms of four types of
coverage: requirements, input domain, output range, and structure. Most probable errors in testing
process are: 1) creating too few tests (they leave many bugs undetected in the delivered system),
2) creating wrong tests (they detect ’wrong bugs’ rather than ’right bugs’ that are critical and
cause serious trouble), and 3) creating too many tests (doing unnecessary and redundant checks.
Redundant testing can be avoided if one finds the test coverage each test provides). The IEEE
standard 1008 for software unit testing gives some guidelines for testing.

Verification and validation (VaCV) of expert system is one of the very important and difficult
task of development of expert systems. Verification refer to confirming that the system has been
developed correctly according to accepted methodology and system requirements, while validation
means ensuring that system correctly serves the purpose for which it is intended. A V&V process
is expected to catch user input errors, incorrect rules and facts, redundant rules, incorrect behavior
of inference engine, and incorrect output after having reached a correct conclusion. ’V&V is not
just a one day concern just before testing or delivery of a system; it spans the entire life cycle of
expert system’. Currently , there is a lot of interest and concern in this area, and more information
can be found in [3, 5,6 9, 10, 21-24, 28 36, 371.

4. MAINTENANCE OR SYSTEM EVOLUTION

Many expert system applications are characterized by lack of consistent and complete knowl-
edge at the representation level, especially at the beginning of a project. Hence, it becomes necessary
to modify existing knowledge base continually and maintain its consistency as new knowledge is
imparted. Though this is a very important part of expert system development and operation [34],
it is often gets least attention, Unlike in conventional software, rules and knowledge about the
domain evolve with experience of their use, and hence, may have to be modified more often than
algorithms. Belief support of rules might vary with feedback from earlier decisions. Further, valid-
ity of some rules, which might be time-dependent, can change over time, necessitating modification.
Also, modification becomes necessary to correct errors found during various phases of development
and during actual operation in the targeted environment.

Thus, as given by Ramamurthy [29], expert system maintenance could be perfective which
encompasses changes asked by the user, adaptive which encompasses changes in environment, and
corrective which corrects undiscovered errors and mistakes. In larger systems, about 65 percent of
maintenance is perfective, 18 percent is adaptive, and 17 percent is corrective [ZO].

Mostly maintenance of expert system have to done by people not involved in the original
development and hence they have to learn first about the system they are planing to maintain.
This calls for better clarity, accuracy and completeness of different kinds of documents, besides
skill and experience of people concerned. The more difficulty to understand the system, the more
difficult it is to maintain, and hence, higher the maintainability risk. Many people prefer to call
this phase as ” system evolution” or ” system enhancement” phase, rather than ’maintenance”.

492

Most expert systems, being large software projects, will suffer from what is known BS deadline
efTect, limiting maintainability and reusability (29). Most projects have completion deadlines. In the
debugging and testing phase, with deadlines near, top priority of developers is to fix errors/bugs.
The worst part is that many difficult bugs tend to get detected near deadlines. This forces to resort
to ”quick and dirty” fixing and hence systems loose their maintainability. Such practices have to
be avoided.

5. SUMMARY

Though expert systems have found wide spread use in many applications, their use in critical
real-time applications are very few. Development of real-time expert systems are much more difficult
than the traditional consultative and advisory expert systems. Further, testing and validation of
them still remains as a major problem. Expert systems cannot solve all types of problem. It is
very important to understand the scope and limitations of current expert systems technology (both
hardware and software) for critical aerospace applications, which pose many constraints.

Knowledge elicitation is a very important activity and a lot of attention has to be paid to it, as
the knowledge is the key to success of an expert system. Also, experts must be cooperative, invest
time, and must help in testing the system. Good design, documentation, adherence to accepted
development methodology, enforcement of discipline in program design and modifications, and
thorough testing and validation are very important for successful operation of expert systems in
space.

Acknowledgements

This work was done while the author held a National Research Council-NASA Ames Research
Center Research fellowship. The author thanks Hamid Berenji and Terry Grant for their careful
reviews and comments on draft of this article. He is also grateful to Dr. Henry Lum for his guidance
and support.

References

1. Basili V.R, and Perricone, ” Software errors and complexity: An emprical investigation”, Comm. ACM,

2. Berm G.M, ”Assessing software maintainability”, Communications of ACM, January 1984, pp 14-23
3. Boehm B.W, ”Verifying and validating software requirements and design specifications, IEEE Software,

4. B.W. Boehm, ”Spiral model of software development and enhancement,” Computer, May 1988
5. Culbert C, et. al., “Approaches to verification of rulebased expert systems,” SOAR’87, NASA-CP-

6. Culbert C, et. al., ”An expert system methodology which supports verification and validation,” IEEE

7. Evanson S.E, “How to talk to to an expert,” AI Expert, Feb. 1988, pp 36-41
8. Dvorak, “Expert systems for monitoring and control,” Proc. Artificial Intelligence and Advance Tech-

9. Gaechnig J, et al., “Evaluation of expert systems: Issues and case studies,” in D.A. Waterman, et al.

Jan. 1984

Jan. 1984, pp 75-88

2491, August 1987

Conf. on AI Applications, 1987

nology Conf., Long Beach, Calif. April 1987.

(ed.) Building Expert Systems, Addison Wesley, 1983
10. Geissman J, “Verification and validation of Expert systems,” AI Expert, Feb. 1988
11. Goodenough J.B, and Gerhart, “Toward a theory of test data selection,” IEEE lkans. Software Engi-

12. Green P. E., ”Resource limitation issues in real-time intelligent systems,” Proc. SPIE Conf. on Appli-
neering, Vol. S E 1 , June 1975,

cations of artificial Intelligence, Vol. 635, Orlando, F1, April 1986

493

13. Harmon P and King D, "Expert systems," John Wiley and Sons, New York, 1985
14. Heer L and Lum H, "Raising the AIQ of the space station," Aerospace America, Vol. , Jan. 1987, pp

15. Heny M.S.H, " Why evolutionary development," Future Generation Computing Systems, No.3, pp 103-

16. Howden W.E, "The theory and practice of functional testing," IEEE Software Sep. 1985, pp 6 1 7
17. Irland E.A, " Assuring quality and reliability of complex electronic systems: Hardware and Software",

18. Laffey T.J, "Real-time knowledge-based systems", AI Magazine, Spring 1988, pp 27-45
19. Leinweber, D "Expert systems in space," IEEE Expert, Vol. 2, No.1, pp 2636, 1987
20. Lients B.P and Swanson E.B, " Software maintenance management", Reading, MA: Addision-Wesley,

21. Miller E and Howden W.E, "Software testing and validation techniques," IEEE Computer Society

22. Nguyen T, "Knowledge base verification," AI Magazine, Summer 1987
23. Nguyen T.A, "Verifying of consistency of production systems," Proc. Third cod. on AI Applications,

24. O'Keefe, et. al., "Validating expert system performance," IEEE EXPERT, Winter 1987
25. Olson J.R and Ruter H.H, "Extracting expertise from experts: Methods of knowledge acquisition,"

Expert systems, Aug. 1987, pp 152-168
26. O'Reiley, C.A, and Cromarty A S , "Fast is not real-time: Designing effective real-time AI systems,"

Proc. SPIE 548, 1985, pp 249-257
27. Prerau D.S, "Knowledge acquisition in the development of large expert systems," AI Magaeine, Vol.

8, Summer 1987, pp 43-51
28. Ramamurthy C.V, et. al, "Application of a methodology for development and validation of reliable

process control software," IEEE 'Jhans. Software Engineering, Vol. SE7, No.7, Nov. 1981, pp 537-555
29. Ramamurthy C.V, et.al., " Programing in large," IEEE trans. Software Engineering, Vol. SE12, No.7,

July 1986, pp 769-783
30. Ramamurthy C.V, et. al., "Software development support for AI programs," Computer, Jan. 1987, pp

31. Reeker L.H, et.al., " Applying software engineering to knowledge engineering (and vice-versa), 27th

32. Shirely R.S, "Some lessons learned using expert systems for process control," IEEE Control systems

33. Special issue on knowledge representation, Computer 1983
34. Soloway, E, et.al. "Assessing the maintainability of XCON: Coping with the problems of a very large

rule-base," Proc. AAAI-1987, Seattle, WA, July 1987
35. Sorrells, " Time-constrained inference strategy for real-time expert systems," IEEE Proc. WESTEX

36. Stachowits R.A, et. al. "Building validation tools for knowledge-based systems," First annual workshop

37. Suwa M, et al. "An approach to verifying completeness and consistency in a rule based expert system,"

38. Turner M, "Real-time experts", System International, Vol. 14, No.1, 1986 pp 55-57
39. Wright, M, et.al., "An expert system for real-time control," IEEE Software, March 1986, pp 1624
40. Zualkernan, et.al., "Expert systems and software engineering: Ready for marriage?," IEEE Expert,

1617

109, 1987

Proc. IEEE, Vol. 76, No.1, Jan. 1988, pp 5-18

1980

Tutorial, 1981

Feb.1987, pp4-8

30 - 40

Annual Technical ACM Symposium, Washington D.C., 1988

Magazine, Dec. 1987, pp 11-15

1985, pp i33e i34 i

on Space Operations Automation and Robotics, SOAR'87, NASA CP-2491, 1987

AI Magasine, Fall 1982, pp16-21

Winter 1986, pp 25-31

4 9 4

r----- -1
I I
! I

I

I
I

I
I
I
I
I
I

1

I
I
I
I b I

Q I
1
I
I
I

495

Table I: Outcome of each phase of life cycle of an expert system

I Outcome
Phase of life cycle

Study of suitability of the domain

Requirement Analysis/Engineering

Requirements Review

Whether the problem can be tackled

Clear understanding of needs and
requirements of targeted system,
Interface specifications
Documents:
- Functional Requirements Specifications
- Test requirements - A preliminary study

Knowledge Acquisition Documented expertise (in natural language)

Knowledge verification & Review

Coding Knowledge & Desiging
problem solving strategies (Inference Engine)

Design Review

Testing in development environment
under off-line simulated conditions

Testing under real-time simulated
environments

Validation & Review

'Ikansport to target hardware

Testing embedded system under
simulated (static and dynamic) environments

Testing under actual environment &
Validat ion

! Test and readiness Review
I

Certified expertise

Knowledge-based system design
Design document

Removal of bugs/errors, inconsistencies
Test report, record of modifications

Checks and verifies time-dependent
features - synchronization, response time, etc.
Test report, record of modifications

Certified Compiled knowledge
~~

Embedded expert system

Flight-worthy Expert System

Final documents with relevant revisions

Desired operations
- Feedback for correction, further improvement

Flight operation
(Maintainance and reuse)

- Review & authorization of modifications
Document update
Evolving expert system in use

I

496

